Energy loss due to small-angle scattering in general relativity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1983 J. Phys. A: Math. Gen. 162751
(http://iopscience.iop.org/0305-4470/16/12/021)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 16:47

Please note that terms and conditions apply.

Energy loss due to small-angle scattering in general relativity

Arnold Rosenblum
Max-Planck-Institut für Physik und Astrophysik, Werner-Heisenberg-Institut für Physik, Munich, Federal Republic of Germany and Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA

Received 19 October 1982, in final form 5 April 1983

Abstract

The equations of motion in general relativity using a fast motion approach' are worked out explicitly to second order. The derivation from first principles with the assumptions made is given. The application of these equations to small-angle scattering will be given in a later paper.

1. Introduction

The determination of radiation reaction forces is a fundamental problem of any field theory of gravitation. More specifically, the discovery of the binary pulsar PSR $1913+16$ and systems such as $4 \mathrm{U} 1626-67$ has led to new interest in the energy loss and the associated damping of binary systems due to gravitational radiation. The recent discovery of gravitational radiation effects (Taylor and Fowler 1979) associated with the period change of the binary pulsar and its apparent agreement with the standard Einstein quadrupole formula has led to even more urgency in attempts to understand radiation reaction forces in general relativity. Since the formula for the energy loss of binary systems has still not been derived consistently using approximation methods within general relativity (Ehlers et al 1976, Cooperstock and Hobill 1979, Papapetrou 1974, Cohen 1980), this paper will be the first of a series which will attempt to settle this question in general relativity by the use of approximation methods. In particular, we will present a Poincaré invariant method which avoids the divergence problems associated with 'slow motion' approaches. We will nowhere use a near-zone expansion of the metric in the far zone which is a feature of all the slow motion approaches that have actually been carried out to high enough order to provide terms for radiation reaction forces.

An example of a Poincare invariant approach is that of Havas and Goldberg (1962). As pointed out in Ehlers et al (1976), the equation of motion with radiation reaction terms presented by Havas and Goldberg is consistent but not complete. In fact, two more orders of iteration are needed to obtain complete results for the bound state motions of binary systems. In this paper we present a second-order Lorentz covariant equation of motion for point particles. This is obtained using an extension of the Havas-Goldberg method. A third-order equation of motion will be presented elsewhere.

2. Formalism

I wish to determine a space-time which satisfies Einstein's equation

$$
\begin{equation*}
G^{\mu \nu}=8 \pi G T^{\mu \nu} \quad(c=1) \tag{1}
\end{equation*}
$$

and thus also its consequence

$$
\begin{equation*}
\nabla \cdot T=0 \tag{2}
\end{equation*}
$$

Since in the problems that I will consider the bodies are far apart, I represent them as monopole point particles, so that for one particle

$$
\begin{equation*}
T^{\alpha \beta}=m \int_{-\infty}^{\infty} \frac{\dot{Z}^{\alpha} \dot{Z}^{\beta} \delta^{4} \mathrm{~d} t}{\left[g_{\gamma \delta}(-g) \dot{Z}^{\gamma} \dot{Z}^{\delta}\right]^{1 / 2}} \tag{3}
\end{equation*}
$$

where $\dot{Z}=\mathrm{d} Z^{\alpha} / \mathrm{d} \tau, \mathrm{d} \tau^{2}=\eta_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}, \eta_{\mu \nu}=\operatorname{diag}(1,-1,-1,-1)$ and δ^{4} is the Dirac distribution on space-time, a biscalar density. For the problems to be considered, $T^{\mu \nu}$ in (1) is a sum of two terms of the form (3), of course.

I replace Einstein's equation (1) with an equivalent form of the field equation (Landau and Lifshitz 1951, Fock 1959)

$$
\begin{equation*}
\left[\tilde{g}^{\mu \nu} \tilde{g}^{\rho \sigma}-\tilde{g}^{\mu \rho} \tilde{g}^{\nu \sigma}\right]_{. \rho \sigma}=16 \pi G \theta^{\mu \nu} \tag{4}
\end{equation*}
$$

where $\tilde{g}^{\mu \nu}=\sqrt{-g} g^{\mu \nu}$ with

$$
\begin{equation*}
\theta^{\mu \nu}=(-g)\left(T^{\mu \nu}+\tau^{\mu \nu}\right) \tag{5}
\end{equation*}
$$

where $T^{\mu \nu}$ is the matter tensor and $\tau^{\mu \nu}$ is the standard Landau-Lifshitz pseudo-tensor with g the determinant of the metric tensor $g_{\mu \nu}$. In addition equation (4) implies

$$
\begin{equation*}
\theta_{, \nu}^{\mu \nu}=0 . \tag{6}
\end{equation*}
$$

We now let

$$
\begin{equation*}
\tilde{g}^{\mu \nu}=\eta^{\mu \nu}+\gamma^{\mu \nu} \tag{7}
\end{equation*}
$$

where $\eta^{\mu \nu}=\operatorname{diag}(1,-1,-1,-1)$. Equation (4) becomes
$\left[\eta^{\mu \nu} \gamma_{, \rho \sigma}^{\rho \sigma}+\eta^{\rho \sigma} \gamma_{, \rho \sigma}^{\mu \nu}-\eta^{\mu \rho} \gamma_{\rho \sigma}^{\gamma \sigma}-\eta^{\nu \sigma} \gamma_{\rho \sigma}^{\mu \rho}\right]=16 \pi G \theta^{\mu \nu}-\left[\gamma^{\mu \nu} \gamma^{\rho \sigma} \gamma^{\mu \rho} \gamma^{\nu \sigma}\right]_{\rho \sigma}$.
In order to solve Einstein's field equations for arbitrary values of the matter variables, we impose the DeDonder coordinate condition

$$
\begin{equation*}
\gamma_{. \nu}^{\mu \nu}=0 \tag{9}
\end{equation*}
$$

which leads to the related field equation

$$
\begin{align*}
& \eta^{\rho \sigma} \gamma_{\rho \rho \sigma}^{\mu \nu}=H^{\mu \nu} \tag{10}\\
& H^{\mu \nu}=16 \pi G \theta^{\mu \nu}-\left[\gamma^{\mu \nu} \gamma^{\rho \sigma} \gamma^{\mu \rho} \gamma^{\nu \sigma}\right]_{, \rho \sigma} . \tag{11}
\end{align*}
$$

In using the DeDonder coordinates, we are assuming that an isolated system can be described in this coordinate system. Globally this is still an open question for physically interesting systems.

In order to proceed, we convert (10) into an integral equation using the retarded Green function defined on flat space. The use of the retarded Green function is supposed to represent the physical assumption that the system has been isolated. Past work has indicated (Leipold 1976, Leipold and Walker 1977) that whether or not
there is any incoming radiation depends on the early motion of the sources. In addition, all the rigorous treatments assume that non-stationary space-times exist which possess a past null infinity in the sense of Penrose (1964) which may or may not be correct (Walker and Will 1979).

In addition, by using the flat space propagator at all stages of the iteration procedure to be discussed later, convergence of the method is made doubtful (Christodoulou and Schmidt 1979) and the question of whether or not the solution satisfies the correct boundary condition is still open (Bird and Dixon 1975, Thorne and Kovacs 1975). Lastly, the problem of for what physically realistic systems (scattering, bound states, etc) we can replace the differential equation by an integral one is still an open question (Walker and Will 1979). That the replacement of the correct Green function by the Minkowski space one is probably not a bad approximation is shown in the work of Christodoulou and Schmidt (1979). These authors show that for a finite time interval and for a source of the gravitational field which has a not too dense matter distribution, then the iteration method discussed later in this paper is asymptotic to the exact solution.

With the above problems in mind we convert (10) into an integral equation using the retarded flat space Green function and obtain

$$
\begin{equation*}
\gamma^{\mu \nu}=\frac{1}{4 \pi} \int \frac{\delta^{4}\left(x^{0}-x^{0^{\prime}}-r\right) H^{\mu \nu}\left(x^{\prime}\right)}{r} \mathrm{~d}^{4} x^{\prime} \tag{12}
\end{equation*}
$$

with $r=\left[\left(x_{1}-x_{1}^{\prime}\right)^{2}+\left(x_{2}-x_{2}^{\prime}\right)^{2}+\left(x_{3}-x_{3}^{\prime}\right)^{2}\right]^{1 / 2}$ and δ^{4} the four-dimensional Dirac delta function.

I solve (12) approximately as follows. Put $\gamma^{\mu \nu}=0$ on the right-hand side and obtain the linearised field $\gamma_{1}^{\mu \nu}$ associated with $T(\eta)$ for arbitrary orbits. $\gamma_{1}^{\mu \nu}$ is proportional to $\varepsilon=4 G / c^{2}$. Next insert ${ }_{1} \gamma^{\mu \nu}$ into the right-hand side of (12) and formally expand each term of the resulting expansion to second order in ε as a functional of unspecified orbits. The use of point particles implies that the metric contains divergent terms. I postpone the discussion of regularisation until I have obtained the equation of motion.

To get equations of motion, I insert the approximate metric into (2) and keep terms up to the second order in ε only; the resulting equations are Poincare invariant analogues of the post-Newtonian equation of motion. I assume the coordinate condition (9) to be satisfied to third order as a consequence of our equation of motion. General conditions under which (8) (or (10)) and (2) imply (9) are under investigation by D Christodoulou (private communication); I hope that they will include small-angle scattering and the bound state problem.

Following the above procedure I obtain the law of motion

$$
\begin{align*}
& m_{a}\left(\mathrm{~d} / \mathrm{d} \tau_{a}\right)\left[\left(\eta_{\mu \rho}+{ }_{1} g_{\mu \rho}+{ }_{2} g_{\mu \rho}\right) \dot{a}^{\rho}-\frac{1}{2} \eta_{\mu \rho} \dot{a}^{\rho}\left({ }_{1} g_{\alpha \beta} \dot{a}^{\alpha} \dot{a}^{\beta}+{ }_{2} g_{\alpha \beta} \dot{a}^{\alpha} \dot{a}^{\beta}-\frac{3}{4}\left(1 g_{\alpha \beta} \dot{a}^{\alpha} \dot{a}^{\beta}\right)^{2}\right)\right. \\
& \left.-\frac{1}{2} \dot{a}^{\rho}{ }_{1} g_{\mu \rho}{ }_{1} g_{\alpha \beta} \dot{a}^{\alpha} \dot{a}^{\beta}\right] \\
& =\frac{1}{2} m_{a} \dot{a}^{\rho} \dot{a}^{\sigma} \partial_{\mu}\left[1 g_{\rho \sigma}+{ }_{2} g_{\rho \sigma}\right]-\frac{1}{4} m_{a} \dot{a}^{\rho} \dot{a}^{\sigma} \partial_{\mu}\left[1 g_{\rho \sigma}\right]_{1} g_{\alpha \beta} \dot{a}^{\alpha} \dot{a}^{\beta} \tag{13}\\
& { }_{1} g_{\alpha \beta}=-{ }_{1} \gamma_{\alpha^{\prime} \beta^{\prime}}+\frac{1}{2} \eta_{\alpha \beta}{ }_{1} \gamma_{\tau^{\prime}}^{\top} \tag{14}\\
& { }_{2} g_{\alpha \beta}=-{ }_{2} \gamma_{\alpha^{\prime} \beta^{\prime}}+\frac{1}{2} \eta_{\alpha \beta}\left[{ }_{2} \gamma_{\tau^{\prime}}^{\tau}+\frac{1}{4}\left({ }_{1} \gamma_{\tau^{\prime}}^{\top}\right)^{2}-\frac{1}{2}{ }_{1} \gamma_{\left.\omega^{\prime}{ }^{\prime}{ }_{1} \gamma_{\tau^{\prime}}^{\mu}\right]+{ }_{1} \gamma_{\alpha^{\prime} \tau^{\prime} 1} \gamma_{\beta^{\prime}}^{\top}-\frac{1}{21} \gamma_{\alpha^{\prime} \beta^{\prime}{ }_{1}} \gamma_{\tau^{\prime}}^{\top} .}\right. \tag{15}
\end{align*}
$$

where the primed indices mean that the indices are lowered with the Minkowski metric $\eta_{\mu \nu}$ and the explicit form of the γ 's is given below; a^{α} are the four positions of particle one or two. Equation (13) is the second-order expansion in the parameter
$\varepsilon=4 G / c^{2}$ of the geodesic law

$$
\begin{equation*}
m_{a} \frac{\mathrm{~d}}{\mathrm{~d} \tau_{a}} \frac{g_{\mu \rho} \dot{a}^{\rho}}{\left(g_{\alpha \beta} \dot{a}^{\alpha} \dot{a}^{\beta}\right)^{1 / 2}}=\frac{m_{a}}{2} \frac{\dot{a}^{\rho} \dot{a}^{\sigma}}{\left(g_{\alpha \beta} \dot{a}^{\alpha} \dot{a}^{\beta}\right)^{1 / 2} \partial_{\mu} g_{\rho \sigma}} \tag{16}
\end{equation*}
$$

where the particle trajectories are parametrised by the Minkowski proper time.
Following the above description, equation (10) with the right-hand side expanded up to order ε^{2} is

$$
\begin{equation*}
\square \gamma^{\alpha \beta}=-4 \pi \varepsilon \sum m_{a} \int \mathrm{~d} \tau_{a} \delta^{4}(x-a) \dot{a}^{\alpha} \dot{a}^{\beta}\left(1+\frac{1}{2} \gamma_{\tau} \omega^{\omega} \dot{a}^{\top} \dot{a}^{\omega}+\frac{1}{4} \gamma_{\tau}^{\tau}\right)+\gamma^{\rho \sigma} \gamma_{\rho \rho \sigma}^{\alpha \beta} . \tag{17}
\end{equation*}
$$

Using equations (13), (14), (15), (19) we have as our final finite equation of motion

$$
\begin{aligned}
& \ddot{C}_{\mu}=\frac{1}{2} \dot{C}^{\rho} \dot{C}^{\sigma} \partial_{\mu}\left(-\sum m_{a} \varepsilon \int \mathrm{~d} \tau_{a} D(x-a)\left(\dot{a}_{\rho} \dot{a}_{\sigma}-\frac{1}{2} \eta_{\rho \sigma}\right)\right. \\
& -\varepsilon^{2} \sum \sum m_{a} m_{b} \int \mathrm{~d} \tau_{a} \int \mathrm{~d} \tau_{b} D(b-a) D(x-b)\left\{\frac{1}{2}(\dot{a} \dot{b})^{2}+\frac{1}{4}\right) \dot{b_{p}} \dot{b}_{\sigma} \\
& \left.-\frac{1}{2}\left[\dot{a}_{\rho} \dot{b}_{\sigma} \dot{a} \dot{b}+\frac{1}{4} \eta_{\rho \sigma}\left(\frac{1}{2}-(\dot{a} \dot{b})^{2}\right)\right]\right\} \\
& -\varepsilon^{2} \int \mathrm{~d} \tau_{a} \int \mathrm{~d} \tau_{b} D(x-a) \sum m_{a} \sum m_{b} D(x-b) \\
& \times\left[\frac{1}{2}\left(\dot{a}_{\rho} \dot{b}_{\sigma} \dot{a} \dot{b}-\frac{1}{2} \eta_{\rho \sigma}\right)-\dot{a}_{\rho}(\dot{a} \dot{b}) \dot{b}_{\sigma}-\frac{1}{2} \dot{a}_{\rho} \dot{a}_{\sigma}\right] \\
& -\varepsilon^{2} \sum m_{a} \sum m_{b} \int \mathrm{~d} \tau_{a} \int \mathrm{~d} \tau_{b} D(x-a) D(a-b) \\
& \left.-\frac{1}{2}\left\{\dot{a}_{\rho} \dot{b}_{\sigma} a \dot{b}+\frac{1}{4} \eta_{\rho \sigma}\left[\frac{1}{2}-(\dot{a} \dot{b})^{2}\right]\right\}\right) \\
& -\frac{1}{4} \dot{C}^{\rho} \dot{C}^{\sigma} \partial_{\mu}\left(-\varepsilon \sum m_{a} D(x-a) \dot{a}_{\rho} \dot{a}_{\sigma}+\frac{1}{2} \eta_{\rho \sigma} \sum m_{a} \int \mathrm{~d} \tau_{a} D(x-a)\right) \\
& \times\left(-\varepsilon \sum \int \mathrm{d} \tau_{b} m_{b} \dot{b}_{\alpha} \dot{b}_{\beta} D(x-b)+\frac{1}{2} \eta_{\alpha \beta} \varepsilon \sum m_{b} \int \mathrm{~d} \tau_{b} D(x-b)\right) \dot{C}^{\alpha} \dot{C}^{\beta} \\
& -(\mathrm{d} / \mathrm{d} \tau)\left[-\varepsilon \sum m_{a} \int \mathrm{~d} \tau_{a} D(x-a)\left[\dot{a}_{\mu}(\dot{a} \dot{c})-\frac{1}{4} \dot{C}_{\mu}-\frac{1}{2} \dot{C}_{\mu}(\dot{a} \dot{C})^{2}\right]\right. \\
& -\varepsilon^{2} \int \mathrm{~d} \tau_{a} \int \mathrm{~d} \tau_{b} \sum \sum m_{a} m_{b} \boldsymbol{D}(b-a) D(x-b)\left[\frac{1}{2}(\dot{a} \dot{b})^{2}+\frac{1}{4}\right] \dot{b}_{\mu}(\dot{b} \dot{c}) \\
& -\frac{1}{2}\left\{\dot{a}_{\mu} \dot{b}_{\rho} \dot{a} \dot{b}+\frac{1}{4} \eta_{\mu \rho}\left[\frac{1}{2}-(\dot{a} \dot{b})^{2}\right]\right\} \dot{C}^{\rho}-\frac{1}{2} \dot{C}_{\mu}\left[\frac{1}{2}(\dot{a} \dot{b})^{2}+\frac{1}{4}\right](\dot{b} \dot{C})^{2} \\
& +\frac{1}{4} \dot{C}_{\mu}\left\{\dot{a}_{k} \dot{b}_{\beta} \dot{a} \dot{b}+\frac{1}{4} \eta_{\alpha \beta}\left[\frac{1}{2}-(\dot{a} \dot{b})^{2}\right]\right\} \dot{C}^{\alpha} \dot{C}^{\beta} \\
& -\varepsilon^{2} \sum m_{a} \sum m_{b} \int \mathrm{~d} \tau_{a} \int \mathrm{~d} \tau_{b} D(x-a) D(x-b)\left\{\dot { C } _ { \mu } \left[\frac{1}{4}(\dot{a} \dot{C})(\dot{a} \dot{b})(\dot{b} \dot{C})\right.\right. \\
& \left.\left.-\frac{1}{16}-\frac{3}{8}\left[\frac{1}{2}-(\dot{a} \dot{c})^{2}\right]\left[\frac{1}{2}-(\dot{b} \dot{c})^{2}\right]-\frac{1}{4}(\dot{a} \dot{c})^{2}\right\}+a_{\mu}\left[\frac{1}{2}(\dot{c} \dot{a})-(\dot{a} \dot{b})(\dot{b} \dot{C})\right]\right\} \\
& -\varepsilon^{2} \sum m_{a} \sum m_{b} \int \mathrm{~d} \tau_{a} \int \mathrm{~d} \tau_{b} D(x-a) D(a-b) \\
& \times\left(-\frac{1}{2}\left\{\dot{a}_{\mu} \dot{b}_{\rho} \dot{a} \dot{b}+\frac{1}{4} \eta_{\mu \rho}\left[\frac{1}{2}-(\dot{a} \dot{b})^{2}\right]\right\} \dot{C}^{\omega}\right.
\end{aligned}
$$

$$
\begin{align*}
& +\frac{1}{4} \eta_{\mu \rho} \dot{C}^{\rho}\left\{\dot{a}_{\alpha} \dot{b}_{\beta} a \dot{b}+\frac{1}{4} \eta_{\alpha \beta}\left[\frac{1}{2}-(\dot{a} \dot{b})^{2}\right]\right\} \dot{C}^{\alpha} \dot{C}^{\beta} \\
& -\frac{1}{2} \dot{C}^{\rho}\left(-\sum \varepsilon m_{a} \int \mathrm{~d} \tau_{a} D(x-a) \dot{a}_{\mu} \dot{a}_{\rho}+\frac{1}{2} \eta_{\mu \rho} \varepsilon \sum m_{a} \int \mathrm{~d} \tau_{a} D(x-a)\right) \\
& \left.\times\left(-\varepsilon \sum m_{b} \int \mathrm{~d} \tau_{b} D(x-b) \dot{b}_{\alpha} \dot{b}_{\beta}+\frac{1}{2} \eta_{\alpha \beta} \varepsilon \sum m_{b} \int \mathrm{~d} \tau_{b} D(x-b)\right) \dot{C}^{\alpha} \dot{C}^{\beta}\right] \\
& -\frac{11}{3} G m_{c}\left(\ddot{C}_{\mu}+\dot{C}_{\mu} \ddot{C}_{\nu} \ddot{C}^{\nu}\right) \tag{18}
\end{align*}
$$

where x^{α} is to be evaluated at particle position C^{α}. The sums are to be taken so that in the retarded Green functions the particle positions do not overlap. The above equations are similar in form to those of Bertotti and Plebanski (1960) except we have no infinite terms and that we have given a derivation.

The finite radiation reaction terms $-\frac{11}{3} G m$ () from the linearised theory are obtained in the simplest manner by the use of Riesz potentials (Rosenblum et al 1982). We define the linearised Riesz potential as

$$
\begin{equation*}
\alpha_{1} g_{\mu \nu}=-\frac{16 \pi G m}{H(\alpha)} \int_{-\infty}^{T_{0}}\left(\nu_{\mu} \nu_{\nu}-\frac{1}{2} \eta_{\mu \nu}\right) s^{\alpha-4} \mathrm{~d} \tau \tag{19}
\end{equation*}
$$

where $H(\alpha)=2^{\alpha-1} \pi \Gamma\left[\frac{1}{2}(\alpha-2)\right], s^{\rho}=x^{\rho}-z^{\rho}(\tau), s^{2}=\eta_{\rho \sigma} s^{\rho} s^{\sigma}$. Analytic continuation of equation (19) to $\alpha=2$ produces the classical linearised gravitational potential at events not located on the world line. In addition, finite results are obtained when the Riesz potentials are evaluated on the world line and this gives results equivalent to other more laborious methods. In addition we have

$$
\begin{equation*}
\alpha\left(\partial_{\rho} 1 g_{\mu \nu}\right)=\frac{16 \pi G m(4-\alpha)}{H(\alpha)} \int_{-\infty}^{\tau_{0}}\left(\nu_{\mu} \nu_{\nu}-\frac{1}{2} \eta_{\mu \nu}\right) s_{\rho} s^{\alpha-6} \mathrm{~d} \tau . \tag{20}
\end{equation*}
$$

We now expand the integrands in expressions (19) and (20) around the retarded point τ_{0}, using the Taylor series

$$
\begin{align*}
& s^{\mu}=-\nu_{0}^{\mu} \tau-\frac{1}{2} \dot{\nu}_{0}^{\mu} \tau^{2}-\frac{1}{6} \ddot{\nu}_{0}^{\mu} \tau^{3}-\cdots \quad \nu^{\mu}=\nu_{0}^{\mu}+\dot{\nu}_{0}^{\mu} \tau+\frac{1}{2} \ddot{\nu}_{0}^{\mu} \tau^{2}+\cdots \\
& s=-\tau-\frac{1}{24} \ddot{\nu}_{0}^{\rho} \nu_{0 \rho} \tau^{3} \quad s^{\mu} \nu^{\nu}-s^{\nu} \nu^{\mu}=\frac{1}{2}\left(\dot{\nu}_{0}^{\mu} \nu_{0}^{\nu}-\dot{\nu}_{0}^{\nu} \nu_{0}^{\mu}\right) \tau^{2}+\frac{1}{3}\left(\ddot{\nu}_{0}^{\mu} \nu_{0}^{\nu}-\ddot{\nu}_{0}^{\nu} \nu_{0}^{\mu}\right) \tau^{3}+\cdots . \tag{21}
\end{align*}
$$

Because of the form of $H(\alpha)$, we can restrict ourselves to the terms in the integrands proportional to $\tau^{\alpha-3}$. Therefore we have (omitting the subscripts zero)

$$
\begin{equation*}
\alpha_{1} g_{\mu \nu} \stackrel{*}{=} \frac{8(\alpha-2) G m}{2^{\alpha-1}\left[\Gamma\left(\frac{1}{2} \alpha\right)\right]^{2}} \int_{-\infty}^{T_{1}}(-\tau)^{\alpha-3} \frac{\mathrm{~d} \nu_{\mu} \nu_{\nu}}{\mathrm{d} \tau} \mathrm{~d} \tau \tag{22}
\end{equation*}
$$

$$
\begin{align*}
& \alpha\left(\partial_{\rho 1} g_{\mu \nu}\right) \stackrel{*}{ } \stackrel{4(4-\alpha)(\alpha-2) G m}{2^{\alpha-1}\left[\Gamma\left(\frac{1}{2} \alpha\right)\right]^{2}} \int_{-\infty}^{\tau_{0}}(-\tau)^{\alpha-3} \eta_{\rho \sigma} \\
& \quad \times\left[\frac{1}{3}\left(\nu_{\mu} \nu_{\nu}-\frac{1}{2} \eta_{\mu \nu}\right)\left(+\ddot{\nu}^{\sigma}-\frac{6-\alpha}{4} \ddot{\nu}^{\beta} \nu_{\beta} \nu^{\sigma}\right)+\dot{\nu}^{\sigma} \frac{\mathrm{d} \nu_{\mu} \nu_{\nu}}{\mathrm{d} \tau}+\nu^{\sigma} \frac{\mathrm{d}^{2} \nu_{\mu} \nu_{\nu}}{\mathrm{d} \tau^{2}}\right] \mathrm{d} \tau \tag{23}
\end{align*}
$$

and thus for $\alpha=2$ (omitting the left subscript 2)

$$
\begin{equation*}
{ }_{1} g_{\mu \nu}=4 G m\left(\nu_{0 \mu} \dot{\nu}_{0 \nu}+\dot{\nu}_{0 \mu} \nu_{0 \nu}\right) \tag{24}
\end{equation*}
$$

$\partial_{\rho 1} g_{\mu \nu}=4 G m \eta_{\rho \sigma}\left(\frac{1}{3}\left(\nu_{0 \mu} \nu_{0 \nu}-\frac{1}{2} \eta_{\mu \nu}\right)\left(\ddot{\nu}_{0}^{\sigma}-\ddot{\nu}_{0}^{\beta} \nu_{0 \beta} \nu_{0}^{\sigma}\right)+\nu_{0}^{\sigma} \frac{\mathrm{d} \nu_{0 \mu} \nu_{0 \nu}}{\mathrm{~d} \tau}+\nu_{0}^{\sigma} \frac{\mathrm{d}^{2} \nu_{0 \mu} \nu_{0 \nu}}{\mathrm{~d} \tau^{2}}\right)$.

Inserting the contributions (24) and (25) into expression (13), we obtain the term $-\frac{11}{3} G m_{c}\left(\ddot{C}_{\mu}+\dot{C}_{\mu} \ddot{C}_{\nu} \ddot{C}^{\nu}\right)$ in equation (18).

3. Discussion

In the above we have derived the second-order fast motion equations of motion and hopefully point out the major limitations of the approach. The above equations have been applied to the small-angle scattering of two bodies (Rosenblum 1978). There is the possibility of contributions to the energy loss in small-angle scattering from terms from the third-order equations of motion. These equations have been explicitly calculated. Because new techniques are needed to compute the third-order equations of motion and because of the length of the result, these equations will be published later.

Recently (Clarke and Rosenblum 1982), it has been shown that under suitable conditions equations similar to those presented here for the case of small-angle scattering have solutions that both exist and are unique. Work is under way to extend this result to the equations presented here. When this is finally done, more credence will be lent to the entire approach.

References

Bertotti B and Plebanski J 1960 Ann. Phys., NY 111969
Bird J and Dixon G 1975 Ann. Phys. 94320
Christodoulou D and Schmidt B 1979 Commun. Math. Phys. 68275
Clarke C J S and Rosenblum A 1982 J. Phys. A: Math. Gen. 152085
Cohen J M 1980 in Tenth Texas Symp. on Relativistic Astrophysics, December 1980 (Ann. NY Acad. Sci.)
Cooperstock F and Hobill D 1979 Phys. Rev. D 202995
Ehlers J, Rosenblum A, Goldberg J and Havas P 1976 Astrophys. J. Lett. 200 L77
Fock V 1959 The Theory of Space, Time and Gravitation (Oxford: Pergamon)
Havas P and Goldberg J N 1962 Phys. Rev. 128398
Landau L and Lifshitz E 1951 The Classical Theory of Fields (Cambridge: Addison-Wesley)
Leipold G 1976 Randbedingungen für masselose Bosefelder in Minkowskiraum, Institutsbericht MPIPAE/Astro 75, preprint
Leipold G and Walker M 1977 Ann. Inst. H. Poincaré 27 61-71

- 1978 Ninth Texas Symp. on Relativistic Astrophysics, December 1978 (Ann. NY Acad. Sci.)

Papapetrou A 1974 Lectures on General Relativity (Hingham, Mass.: Reidel) p 166
Penrose R 1964 in Relativity, Groups and Topology ed C M deWitt and B deWitt (New York: Gordon and Breach) p 535
Rosenblum A 1978 Phys. Rev. Lett. 41 1003, 1140
Rosenblum A, Kates R and Havas P 1982 Phys. Rev. D 26 no 10, 2707
Taylor J H, Fowler L A and McCulloch P M 1979 Nature 2778 Feb 437
Thorne K S and Kovacs J 1975 Astrophysics 32001254
Walker M and Will C M 1979 Phys. Rev. D 193495

