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J.  Phys. A: Math. Gen. 16 (1983) 2751-2756. Printed in Great Britain 

Energy loss due to small-angle scattering in general 
relativity 

Arnold Rosenblum 
Max-Planck-Institut fur Physik und Astrophysik, Werner-Heisenberg-Institut fur Physik, 
Munich, Federal Republic of Germany and Department of Physics, Temple University, 
Philadelphia, Pennsylvania 19122, USA 

Received 19 October 1982, in final form 5 April 1983 

Abstract. The equations of motion in general relativity using a .fast motion approach‘ 
are worked out explicitly to second order. The derivation from first principles with the 
assumptions made is given. The application of these equations to small-angle scattering 
will be given in a later paper. 

1. Introduction 

The determination of radiation reaction forces is a fundamental problem of any field 
theory of gravitation. More specifically, the discovery of the binary pulsar PSR 
1913+16 and systems such as 4U 1626-67 has led to new interest in the energy 
loss and the associated damping of binary systems due to gravitational radiation. The 
recent discovery of gravitational radiation effects (Taylor and Fowler 1979) associated 
with the period change of the binary pulsar and its apparent agreement with the 
standard Einstein quadrupole formula has led to even more urgency in attempts to 
understand radiation reaction forces in general relativity. Since the formula for the 
energy loss of binary systems has still not been derived consistently using approximation 
methods within general relativity (Ehlers et a1 1976, Cooperstock and Hobill 1979, 
Papapetrou 1974, Cohen 1980), this paper will be the first of a series which will 
attempt to settle this question in general relativity by the use of approximation methods. 
In particular, we will present a Poincare invariant method which avoids the divergence 
problems associated with ‘slow motion’ approaches. We will nowhere use a near-zone 
expansion of the metric in the far zone which is a feature of all the slow motion 
approaches that have actually been carried out to high enough order to provide terms 
for radiation reaction forces. 

An example of a PoincarC invariant approach is that of Havas and Goldberg 
(1962). As pointed out in Ehlers er a1 (19761, the equation of motion with radiation 
reaction terms presented by Havas and Goldberg is consistent but not complete. In 
fact, two more orders of iteration are needed to obtain complete results for the bound 
state motions of binary systems. In this paper we present a second-order Lorentz 
covariant equation of motion for point particles. This is obtained using an extension 
of the Havas-Goldberg method. A third-order equation of motion will be presented 
elsewhere. 

@ 1983 The Institute of Physics 275 1 



2752 A Rosenblum 

2. Formalism 

I wish to determine a space-time which satisfies Einstein’s equation 

G”” = 8.rrGT”” (c = 1) (1) 

and thus also its consequence 

V * T = O .  

Since in the problems that I will consider the bodies are far apart, I represent them 
as monopole point particles, so that for one particle 

where 2 = dZ*/dr, d r 2  = 77”” dx” dx ”, = diag(1, - 1, - 1, - 1) and S4 is the Dirac 
distribution on space-time, a biscalar density. For the problems to be considered, 
T”” in (1) is a sum of two terms of the form (3), of course. 

I replace Einstein’s equation (1) with an equivalent form of the field equation 
(Landau and Lifshitz 1951, Fock 1959) 

where T”” is the matter tensor and 7”” is the standard Landau-Lifshitz pseudo-tensor 
with g the determinant of the metric tensor g”,,, In addition equation (4) implies 

ey = 0. (6) 

g””=77@”+Y”” (7) 

(8) 

In order to solve Einstein’s field equations for arbitrary values of the matter 

We now let 

where 77”” = diag(1, - 1, - 1, - 1). Equation (4) becomes 
(1” P C  P C  ”” CIP Y U  ”U P C  ” P  [77 Y,PU+V Y,w-77 Y . w - 7 7 ” u Y ~ ~ l = ~ ~ ~ ~ ~ ” “ - ~ Y  Y Y YYUI.PC. 

variables, we impose the DeDonder coordinate condition 

y y = o  (9) 
which leads to the related field equation 

In using the DeDonder coordinates, we are assuming that an isolated system can 
be described in this coordinate system. Globally this is still an open question for 
physically interesting systems. 

In order to proceed, we convert (10) into an integral equation using the retarded 
Green function defined on flat space. The use of the retarded Green function is 
supposed to represent the physical assumption that the system has been isolated. Past 
work has indicated (Leipold 1976, Leipold and Walker 1977) that whether or not 
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there is any incoming radiation depends on the early motion of the sources. In 
addition, all the rigorous treatments assume that non-stationary space-times exist 
which possess a past null infinity in the sense of Penrose (1964) which may or may 
not be correct (Walker and Will 1979). 

In addition, by using the flat space propagator at all stages of the iteration procedure 
to be discussed later, convergence of the method is made doubtful (Christodoulou 
and Schmidtl979) and the question of whether or not the solution satisfies the correct 
boundary condition is still open (Bird and Dixon 1975, Thorne and Kovacs 1975). 
Lastly, the problem of for what physically realistic systems (scattering, bound states, 
etc) we can replace the differential equation by an integral one is still an open question 
(Walker and Will 1979). That the replacement of the correct Green function by the 
Minkowski space one is probably not a bad approximation is shown in the work of 
Christodoulou and Schmidt (1979). These authors show that for a finite time interval 
and for a source of the gravitational field which has a not too dense matter distribution, 
then the iteration method discussed later in this paper is asymptotic to the exact 
solution. 

With the above problems in mind we convert (10) into an integral equation using 
the retarded flat space Green function and obtain 

t 2 1 / 2  with r = [ ( X ~ - X ; ) ~ + ( X ~ - X ; ) ~ + ( X ~ - X ~ )  3 and S 4  the four-dimensional Dirac delta 
function. 

I solve (12) approximately as follows. Put ?'I" = 0 on the right-hand side and 
obtain the linearised field yy' associated with T ( q )  for arbitrary orbits. -yT" is 
proportional to E = 4 G / c 2 .  Next insert ly'I' into the right-hand side of (12) and 
formally expand each term of the resulting expansion to second order in E as a 
functional of unspecified orbits. The use of point particles implies that the metric 
contains divergent terms. I postpone the discussion of regularisation until I have 
obtained the equation of motion. 

To get equations of motion, I insert the approximate metric into (2) and keep 
terms up to the second order in E only; the resulting equations are PoincarC invariant 
analogues of the post-Newtonian equation of motion. I assume the coordinate condi- 
tion (9) to be satisfied to third order as a consequence of our equation of motion. 
General conditions under which (8) (or (10)) and (2) imply (9) are under investigation 
by D Christodoulou (private communication); I hope that they will include small-angle 
scattering and the bound state problem. 

ma(d/dTa)[(qFp + i g w  + 2 g r r p ) d p  -4 t7~ ,p~ ' (1gaBdU~'  +2gaBd"dP - k g U B a  a 

Following the above procedure I obtain the law of motion 
. u . 5  2 

) 

-&1g,, 1 g a p d U U ~ ]  

(13) 
1 

= zm,u ' U  "a, [ g ,  + 2 g w ]  - im,u ' U  "a, [ lg , ] lg ,pu  "U ' 
1gup = - 1 ~ u ' p '  + $ T a p  (14) 
2gaB = -2Ya'B' +?iva@[2Y:' + i ( l Y : ' ) 2 - ?  1 ly:' l Y ~ ' ] + l Y u ' r ' l Y P '  7 1  - 2 l Y u ' p '  l y ; '  (15) 
where the primed indices mean that the indices are lowered with the Minkowski 
metric vFV and the explicit form of the 7's is given below; a' are the four positions 
of particle one or two. Equation (13) is the second-order expansion in the parameter 
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E = 4G/c2 of the geodesic law 

where the particle trajectories are parametrised by the Minkowski proper time. 

up to order is 

n y a P = - 4 m  E m ,  

Following the above description, equation (10) with the right-hand side expanded 

(17) 

Using equations (131, (14), (151, (19) we have as our final finite equation of motion 

. a s p  1 d7,S ( x - u ) ~  a ( l + ~ y ~ , ~ , u T a ~ + b ~ ~ , ) + ~ p u y ~ ~ .  I 4  
I e, = p c f f a ,  (-1 ma& J dTaD(X - u ) ( d p u u - - 5 v p u )  
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(18) 

where x u  is to be evaluated at particle position Ca. The sums are to be taken so that 
in the retarded Green functions the particle positions do not overlap. The above 
equations are similar in form to those of Bertotti and Plebanski (1960) except we 
have no infinite terms and that we have given a derivation. 

The finite radiation reaction terms -9 Gm ( ) from the linearised theory are 
obtained in the simplest manner by the use of Riesz potentials (Rosenblum et a1 
1982).  We define the linearised Riesz potential as 

1 1  - T-Gm, (CM + C,CvCv) 

1 where H ( a )  = 2 ' - 1 7 r r [ ~ ( a  - 2 ) ] ,  s p  = x p  - z p ( r ) ,  s 2  = ~ p ~ p s u .  Analyticcontinuationof 
equation (19) to a = 2 produces the classical linearised gravitational potential at events 
not located on the world line. In addition, finite results are obtained when the Riesz 
potentials are evaluated on the world line and this gives results equivalent to other 
more laborious methods. In addition we have 

We now expand the integrands in expressions (19) and ( 2 0 )  around the retarded point 
ro, using the Taylor series 

s!J = -v;r -;3;;r'-&r3-. . , v @  = v;; + V G r  + $i;;;r2+. . . 
(21) 

Because of the form of H ( Q ) ,  we can restrict ourselves to the terms in the integrands 
proportional to T " - ~ ,  Therefore we have (omitting the subscripts zero) 

= -r - l - p  24 vo vopr s ~ v " - s " v +  =' 2 ( r ; , " V i  - i . : V g ) T 2 + f ( ; g V :  -+gV,")T3+. . ' . 

and thus for Q = 2 (omitting the left subscript 2) 
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Inserting the contributions (24) and (25) into expression (13), we obtain the term 
- 7 Gm, (C& + CFCvC”) in equation (18). 11 

3. Discussion 

In the above we have derived the second-order fast motion equations of motion and 
hopefully point out the major limitations of the approach. The above equations have 
been applied to the small-angle scattering of two bodies (Rosenblum 1978). There 
is the possibility of contributions to the energy loss in small-angle scattering from 
terms from the third-order equations of motion. These equations have been explicitly 
calculated. Because new techniques are needed to compute the third-order equations 
of motion and because of the length of the result, these equations will be published later. 

Recently (Clarke and Rosenblum 1982), it has been shown that under suitable 
conditions equations similar to those presented here for the case of small-angle 
scattering have solutions that both exist and are unique. Work is under way to extend 
this result to the equations presented here, When this is finally done, more credence 
will be lent to the entire approach. 
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